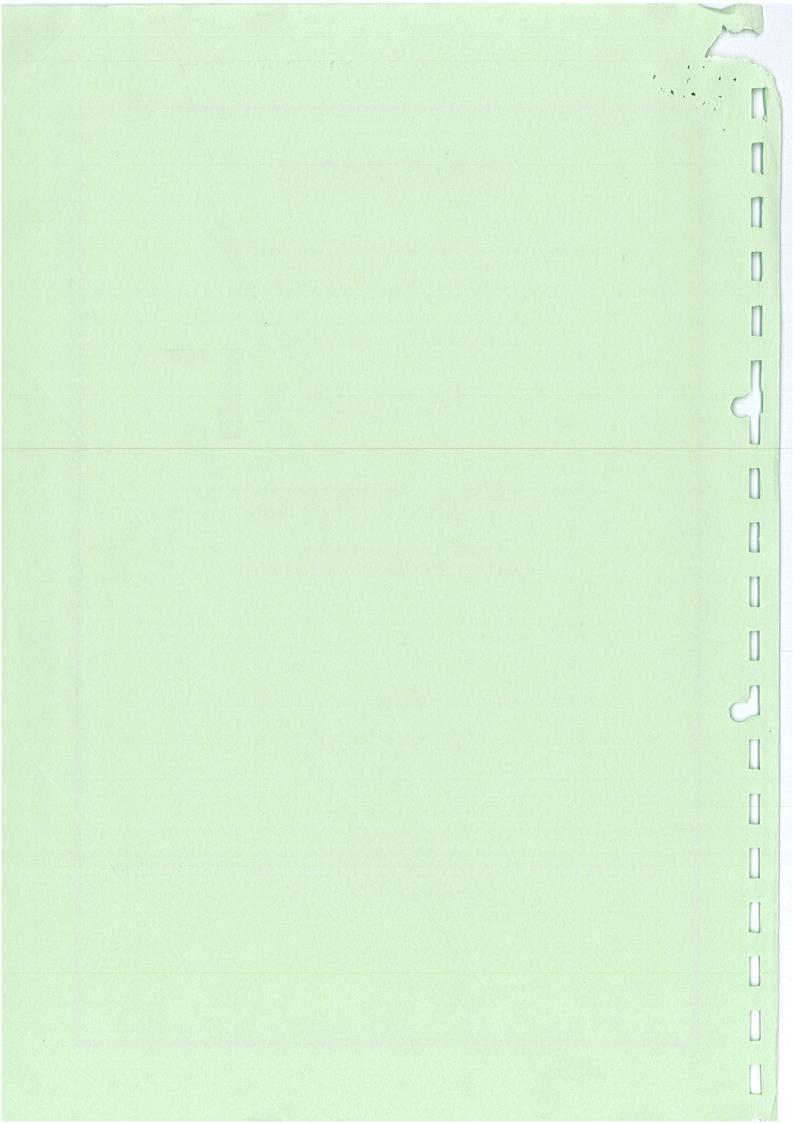


EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

CIVIL ENGINEERING DEPARTMENT

FINAL EXAMINATION JUNE 2012 SESSION

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING


DATE: 20 NOVEMBER 2012 DURATION: 2 HOURS (8.30AM-10.30AM)

This paper consisting of NINE (9) pages including the front page.

This paper contains SIX (6) questions.

Answer FOUR (4) questions only.

CONFIDENTIAL
DO NOT OPEN THIS QUESTION UNTIL INSTRUCTSD BY THE
CHIEF INVIGILATOR

CONFIDENTIAL

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING /PSIS

INSTRUCTION:

This section consists of SIX (6) essay questions. Answer FOUR (4) questions only. Write your answer's in the answer booklet.

QUESTION 1

a) Identify the differences comparison between Macadam Road and Telford Road.

[CLO 1: C4]

(10 marks)

- b) Explain general applications of road in Malaysia below:
 - i. Expressway
 - ii. Highways
 - iii. Primary Roads
 - iv. Secondary Roads
 - v. Minor Roads

[CLO 2: C4]

(15 marks)

QUESTION 2

a) Describe the characteristic of Mass Haul Diagram.

[CLO 1: C4]

(8 marks)

b) Describe 2 (TWO) chemical admixture stabilization

[CLO 1: C4]

(8 marks)

c) Explain 2 (TWO) road construction equipment.

[CLO 1: C4]

(9 marks)

Page 2 of 9

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING /PSIS

QUESTION 3

a) Explain the softening point test and penetration test for bitumen

[CLO 2: C3] (10 marks)

b) The result of the sieves analysis of the aggregate for the road base material is given in **Table 1**. Determine either the material is suitable or not for the work purpose by calculating and plotting on the graph in **Appendix: Question 3 (b)**.

Table 1

Sieves Size (mm)	Mass Retained (g)	Mass Passing (g)	Percent Passing (%)	Road Base Gradation Limit (Types 1)
50	0	16000		100- 100
37.5	647.7			95-100
20	3543.4			60-80
10	3393			40-80
5	1718			25-40
2.36	2574			15-30
0.600	2798.7			8-22
0.075	1070.7			0-8
Pan	254.5			

[CLO 2: C3] (15 marks)

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING /PSIS

QUESTION 4

a) Explain (5) FIVE advantages of cement concrete roads.

[CLO 2: C3] (10 marks)

b) Design a flexible pavement for the road using the JKR Arahan Teknik (Jalan) 5/85 Design Method). Give n information:-

Chess of road = JKR 05

Initial daily traffic volume (ADT) = 6,000

Percentage of commercial vehicles = 15%

Annual growth rate = 7%

Equivalence factor = 2.0

Subgrade CBR = 5%

Rolling terrain

Requirement of pavement layers:

- i. Wearing Course = Asphalt Concrete.
- ii. Road-Base Course = Cement stabilized.
- iii. Sub-Base Course = Cement stabilized.

[CLO 2: C3]

(15 marks)

CONFIDENTIAL

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING /PSIS

	ENGINEERING /PSIS	
QUE	STION 5	
a)	Indentify 3(THREE) levels of the driving task.	
,		[CLO 2: C3]
		(6 marks)
b)	Two platoons of cars are timed over a distance of 0.75 km and the	ir flows are
	recorded. The first group takes 55 seconds, with the flow of 1975v	ehicles per hour.
	The second group takes 45 seconds, with a flow of 2475 vehicles	per hour.
	Determine the maximum flow of the traffic stream.	
		[CLO 2: C3]
		(9 marks)
c)	Explain 5 (FIVE) characteristics of visual reception in highway.	
		[CLO 2 : C3]
		(10 marks)
QUES	TION 6	
a)	State 3(THREE) effects of transportation to air quality.	
		[CLO 1: C3]
		(6 marks)
b)	Explain the effect of traffic induced vibration in building.	
	i. Airborne vibration	
	ii. Groundborne vibrations	
		[CLO 1: C3]
		(8 marks)
c)	Identify 3(THREE) function for:	
	i. Transversal drainage	
	ii. Longitudinal drainage	

Page 5 of 9

[CLO 1: C3]

(12 marks)

APPENDIX

 $V_o = ADT \times 0.5 \times 365 \text{ Pc}/100$

$$V_c = \frac{V_o (1+r)^x - 1}{r}$$

 $ESA = V \times e$

 $c = I \times R \times T$

 $SN = a_1D_1 + a_2D_2 + a_3D_3$

Table 3.1 Guide for Equivalence Factor

Percentage of selected heavy goods vehicles*	0-3	15%	16-50%	51-100%
Type of road Equivalence Factor	local	trunk 2.0	β.0	3.7

^{*} Selected heavy goods vehicles refer to those conveying timber and quarry materials.

Table 3.2 Maximum Hourly Capacity Under Ideal Conditions

Road Type	Passenger Vehicle Units per hour
Multi lane	2000 per lane
Two lanes (bothways)	2000 total for bothways
Three lanes (bothways)	4000 total for bothways

Table 3.3 Carriageway Roadway Reduction Factor

C ' W' 141	Shoulder Width			
Carriageway Width	2.00m	1.50m	1.25m	1.00m
7.5m	1.00	0.97	0.94	0.90
7. Om	0.88	0.86	0.83	0.79
6.Om	0.81	0.78	0.76	0.73
5. Om	0.72	0.70	0.67	0.64

Table 3.4 Traffic Reduction Factor

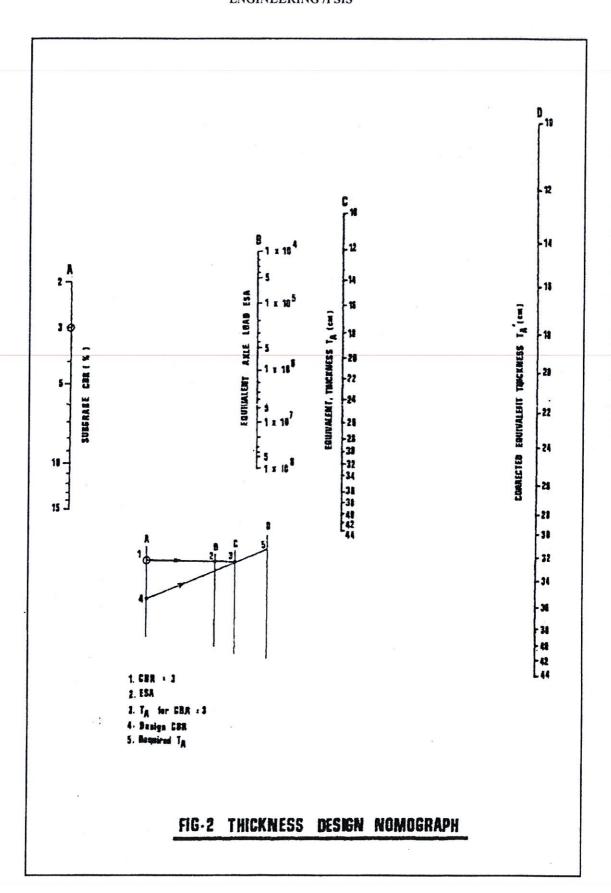
Type of Terrain	Factor*
Flat	T = 100/(100+Pc)
Rolling	T = 100/(100+2Pc)
Mountainous	T = 100/(100+5Pc)

^{*} Nota Bene: Pc is as per 3.3.2

CN502: HIGHWAY AND TRANSPORTATION IN ENVIRONMENTAL ENGINEERING /PSIS

Table 3.5 Structural Layer Coefficients

Component	Type of Layer	Property	Coefficient
Wearing and Binder Course	Asphalt Concrete		1.00
	Dense Bituminous Macadam	Type 1:Stability > 400 kg	0.80
	Ma Ca da m	Type 2:Stability > 300 kg	0.55
Base Course	Cement Stabilized	Unconfined Compressive strength(7 days) 30-40 kg/cm2	0.45
Stat	Mechanically Stabilized crushed aggregate	CBR > 80%	0.32
	Sand, laterite etc.	CBR ≥ 20%	0.23
Subbase	Crushed aggregate	CBR ≥ 30%	0.25
	Cement Stabilized	CBR ≥ 60%	0.28


Table 3.6 Minimum Layer Thickness


Туре	of Layer	Minimum Thickness
Wearing Course		4 cm
Binder Course		5 cm
Base Course	Bituminous	5 cm
	Wet Mix	10 cm
	Cement treated*	10 ст
Subbase Course	Granular	10 cm
	Cement treated	15 cm

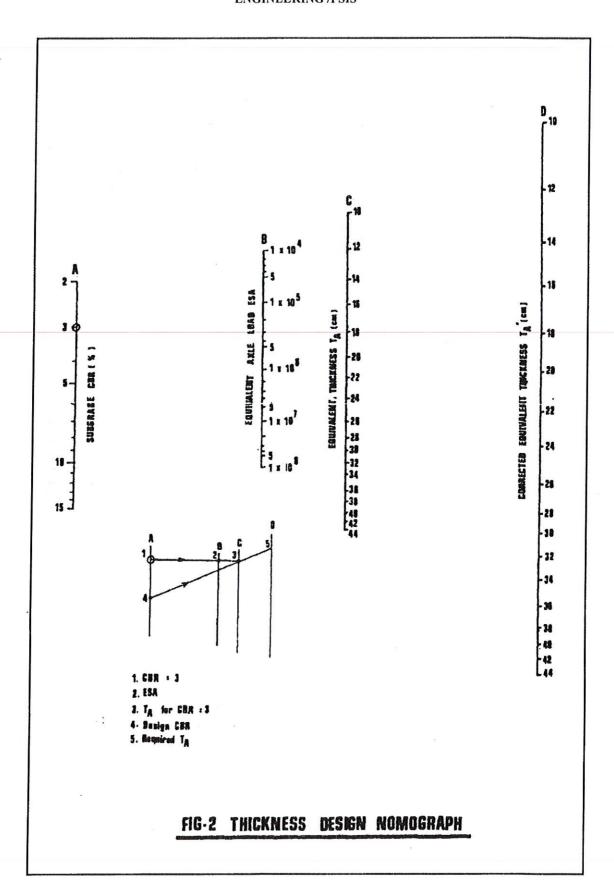
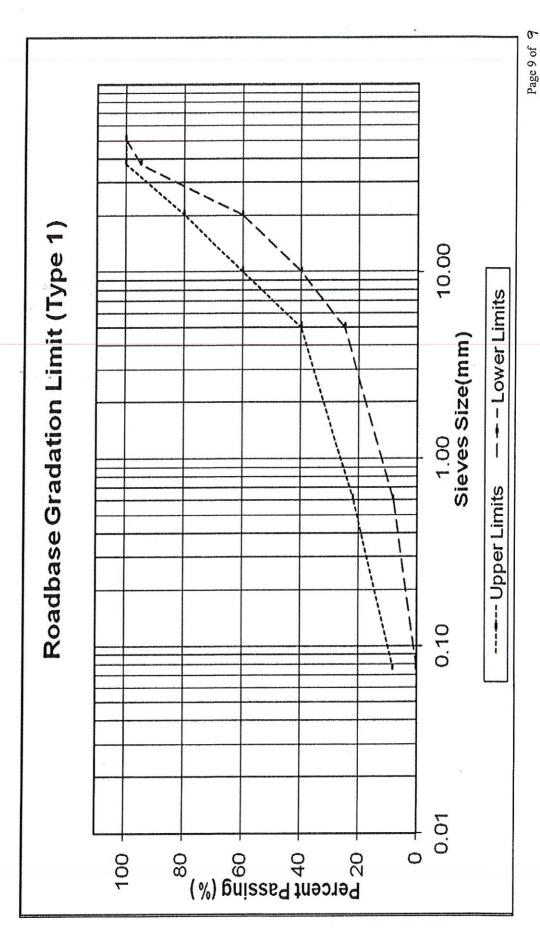

^{*} No to Bene

Table 3.8 Minimum Thickness of Bituminous Layer


TA	Total thickness of bituminous layer
< 17.5 cm	5.0 cm
17.5 - 22.5 ст	10.0 ст
23.0 - 29.5 ст	15.0 cm
> 30.0 cm	17.5 cm

Apendix :Question 3 (b)

