# POLITEI (NIK) Jabatan Pengajian Politeknik

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION

(MINISTRY OF HIGHER EDUCATION)

CIVIL ENGINEERING DEPARTMENT

FINAL EXAMINATION

JUNE 2012 SESSION

CC505: STRUCTURAL ANALYSIS 1

DATE: 18 NOVEMBER 2012(SUNDAY)

**DURATION: 2 HOURS (11.15 AM - 1.15 PM)** 

This paper consists of EIGHT (8) pages including the front page.

Section B: Structured (2 questions – answer all)

Section C: Essay (4 questions - answer 2 questions)

#### CONFIDENTIAL

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(The CLO stated is for reference only)



### SECTION A (50 marks)

Instruction: This section consists of TWO (2) structured questions. Answer ALL the questions.

## **QUESTION 1**

For the portal frame in Figure 1 below, use the Slope Deflection Method to;

|      |                                              | [CLO1,C3]  |
|------|----------------------------------------------|------------|
| i.   | calculate the fixed end moment               | (6 marks)  |
| ii.  | write down the Slope Deflection Equation     | (6 marks)  |
| iii. | determine the end moment at all the supports | (10 marks) |
| iv.  | sketch the bending moment diagram            | (3 marks)  |

Given that EI value is constant.



Figure 1

**Figure 2** shows 20 kN and 15kN of point load acting at span AB and 10kN/m uniform distributed load acting along span BC. Assuming EI is constant and by using **Moment Distribution Method**; [CLO1,C3]

- a) determine the stiffness values and distribution factors (4 marks)
- b) calculate the fixed end moment for each member (4 marks)
- c) calculate the end moment at all the supports (8 marks)
- d) determine reaction forces at the supports (4 marks)
- e) draw shear force and bending moment diagram (5 marks)



Figure 2



#### SECTION B (50 marks)

Instruction: This section consists of FOUR (4) structured questions. Answer TWO (2) questions.

#### **QUESTION 1**

- (a) Prove that the beam in **Figure 3** is a statically indeterminate beam and state its degree of indeterminancy. [CLO1,C2] (2 marks)
- (b) Superposition method is a method that has been modified from the method of Macaulay Method to solve the case of the statically indeterminate beams. By using this method; [CLO1,C3]
  - i. write down the compatibility equation (4 marks)
     ii. determine the reaction at the supports (12 marks)
     i. calculate the moment at B (2 marks)
     ii. draw the shear force diagram (2 marks)
     iii. draw the bending moment diagram (3 marks)



Figure 3

Analyze the beam in Figure 4 and by using Slope Deflection Method; [CLO1,C3]

| i.   | calculate the fixed end moment                                                | (7 marks) |
|------|-------------------------------------------------------------------------------|-----------|
| ii.  | write down the slope deflection equation and find $\boldsymbol{\theta}$ value | (8 marks) |
| iii. | calculate the end moment at all the supports                                  | (2 marks) |
| iv.  | calculate the reaction forces at the supports                                 | (2 marks) |
| v.   | draw shear force and bending moment diagram                                   | (6 marks) |

Given that EI value is constant.



Figure 4

Figure 5 shows a portal frame with the second moment of area, I for the span AB = 2I, BC = 2I and CD = 1.5I. By using the **Moment Distribution Method**, determine:-

[CLO1,C3]

a) value of each Fixed End Moment of span.

(5 marks)

b) the value of stiffness factor and distribution factor.

(6 marks)

c) the internal moments at point A, B and D (do the calculations only up to 4 times of the balancing).

(14 marks)



Figure 5

Figure 6 shown the sway portal frame ABCD. The moment distribution with sidesway is shown in Table 1. Use Moment Distribution Method determine:



Figure 6

| (a) The end moments for non-sidesway case | (8 marks) |
|-------------------------------------------|-----------|
| (b) The preventing force, P               | (6 marks) |
| (c) The sway force, S                     | (6 marks) |
| (d) The correction factor, and            | (1 mark)  |
| (e) End moment for all members            | (4 marks) |

Table 1: End moments with sidesway

| JOINT      | A      |        | В      |        | С      | D      |
|------------|--------|--------|--------|--------|--------|--------|
| MEMBER     | AB     | BA     | BC     | СВ     | CD     | DC     |
| DF         | 0      | 4/7    | 3/7    | 1/3    | 2/3    | 0      |
| END MOMENT | +14.11 | +28.21 | -28.21 | +45.55 | -45.55 | -22.63 |

#### Slope Deflection Method

$$M_{_{AB}}=2EI/L\left(2\theta_{_{A}}+\theta_{_{B}}-3\delta/L\right)+FEM_{_{AB}}$$

$$M_{BA} = 2EI/L(2\theta_B + \theta_A - 3\delta/L) + FEM_{BA}$$

## 2. Moment Distribution Method

$$SettlementMoment = \frac{6EI\Delta}{L^2} @ \frac{3EI\Delta}{L^2}$$

## Table 1: Fixed End Moment (FEM)

| 1   | $FEM_{AB} = \frac{-wL^2}{12}$   | w / unit length | $FEM_{BA} = \frac{+wL^2}{12}$   |
|-----|---------------------------------|-----------------|---------------------------------|
|     | $FEM_{AB} = \frac{-wL}{8}$      | A B             | $FEM_{BA} = \frac{+wL}{8}$      |
| . 5 | $FEM_{AB} = \frac{-Wab^2}{L^2}$ | A B             | $FEM_{BA} = \frac{+Wa^2b}{L^2}$ |

