

EXAMINATION AND EVALUATION DIVISION DEPARTMENT OF POLYTECHNIC EDUCATION (MINISTRY OF HIGHER EDUCATION)

ELECTRICAL ENGINEERING DEPARTMENT

FINAL EXAMINATION JUNE 2012 SESSION

ET101: ELECTRICAL TECHNOLOGY

DATE: 23rd NOVEMBER 2012 (FRIDAY)

DURATION: 2 HOURS (8.30AM – 10.30AM)

This paper consists of TWELVE (12) pages including the front page.

Section A1: Objective (10 questions – answer all)

Section A2: Fill-in-the-blank (10 questions – answer all) Section B: Structure (10 questions - answer all)

Section C: Essay (2 questions – answer all)

CONFIDENTIAL DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE CHIEF INVIGILATOR

(The CLO stated is for reference only)

SECTION A

OBJECTIVE QUESTIONS (20 marks)

INSTRUCTION:

This section consists of TWENTY (20) objective questions.

Answer ALL questions in the answer booklet.

1. Convert 0.00033 to engineering notation.

[CLO2:C3]

- A. 330 X 10⁻⁶
- B. 3300 X 10⁻⁶
- C. 33 X 10⁻⁶
- D. 0.33 X 10⁻⁶
- 2. Figure A (2) shows 4-D size batteries connected in a series circuit. What is the total voltage measured between points A and B? [CLO2:C3]

Figure A (Q2)

- A. 1.5 V.
- B. 6 V.
- C. 4 V.
- D. None of the above.

ET101: ELECTRICAL TECHNOLOGY

3.	Tw	Two bulbs marked 200 watt-250 volts and 100 watt-250 volts are joined in series				
	to 2	250 volts supply. Power consumed in circuit is [CLO2:C3]				
	A.	33 watt				
	В.	67 watt				
	C.	100 watt				
	D.	300 watt				
4.	. If a circuit contains two unequal resistances in parallel, [CLO1:C1]					
	A.	the current is same in both.				
	B. large current flows in larger resistor.					
	C. the potential difference across each resistor is same.					
	D.	D. smaller resistance has smaller conductance while the current is same in				
		both.				
5.	Cho	Choose the correct statements related to the Maximum Power Transfer.[CLO1:C1]				
	i.	Number of nodes for a network must be determined.				
	ii. A supply is operating under 50% efficiency when RL = RTh.					
	iii.	Maximum power to the load is set equal to the Norton resistance.				
	iv.	A load will receive maximum power when load resistance is equals to				
		Thevenin resistance.				
	A.	i and ii				
	B.	i and iii				
	C.	ii and iv				
	D.	iii and iv				

6. Which of the following equations are related to the circuit in Figure A(6) when current through R3 is calculated by using Mesh Analysis? [CLO2:C3]

Figure A(Q6)

i.
$$-E1 + V1 + V2 + E2 = 0$$

ii.
$$V2 + V3 - E2 = 0$$

iii.
$$7 I_1 - 6I_2 + 10 = 0$$

iv.
$$8I_2 - 6I_1 = 10$$

- A. i, ii and iii
- C. i, iii and iv
- B. i, ii and iv
- D. ii, iii and iv
- 7. A 0.1 μF and 0.4 μF capacitors are in series. Calculate the total capacitance.

[CLO2:C3]

- A. $0.8 \mu F$
- B. 80 pF
- C. 8 pF
- D. 8 μF

ET101: ELECTRICAL TECHNOLOGY

8.	Determine the voltage across a 1000 pF capacitor that is storing 20 micro-coulombs (20 μ C) of charge.	[CLO2:C3]
	A. $20\mu V$	
	B. 20kV	
	C. 0.2 kV	
	D. 2V	
9.	A series RL circuit has a resistance of 1 $k\Omega$ and inductance of 1mH.	
	Calculate the time constant.	[CLO2:C3]
	Α. 1μs	
	B. 1ms	
	C. 10µs	
	D. None of above	
10.	The ability to concentrate magnetic flux is called	[CLO1:C1]
	A. Permeability	
	B. Density	
	C. Magnetism	
	D. Polarization	

CONFIDENTIAL

ET101: ELECTRICAL TECHNOLOGY

17.	is the amount of capacitance when one coulomb of charge				
	is stored with one volt across the plates.	[CLO1:C1]			
18.	Inductance is directly proportional to the square number of				
	permeability, and the cross-sectional area of the core.				
19.	Fluxis the number of magnetic field lines per unit area of				
	a section perpendicular to the direction of flux.	[CLO1:C1]			
20.	When magnetic flux moves, the motion of magnetic lines cutting across a				
	conductor forces free electrons in the conductor to move and produce current				
	by an action called	[CLO1:C1]			

QUESTION 7

By using Thevenin's Theorem, find the V_{TH} through R_L for the value of 2Ω as shown in Figure B (7).

[CLO2:C3] (3 marks)

Figure B(Q7)

QUESTION 8

Define a capacitor and state its unit.

[CLO1:C1]

(2 marks)

QUESTION 9

Define Faraday's Law.

[CLO1:C1]

(2 marks)

QUESTION 10

List the **THREE** (3) ferromagnetic materials.

[CLO1:C1]

(3 marks)

SECTION C

ESSAY QUESTIONS (50 marks)

INSTRUCTION:

This section consists of TWO (2) essay questions.

Answer ALL questions.

QUESTION 1

a) From Figure C(1a), determine the total resistance as seen from the source terminal.

[CLO2:C3]

(6 marks)

- b)
 - i. Define Norton's Theorem.

[CLO1:C2]

(3 marks)

ii. Based on Figure C(1b), calculate the following using Norton's Theorem if $R_L\!=\!10\Omega$

[CLO2:C3]

Figure C(Q1b)

- iii. With the aid of schematic, calculate the Norton current, I_N . (4 marks)
- v. The Norton Resistance, R_{N} . (4 marks)
- vi. Draw Norton equivalent circuit. (4 marks)
- vii. The current flows at $R_L = 10\Omega$. (4 marks)

QUESTION 2

a) Ilustrate the magnetic lines of two fields for the parallel conductors in the following condition:

[CLO2:C3]

i.

A

(2.5 marks)

ii.

A

В (X)

(2.5 marks)

b) By using an appropriate diagram, explain THREE(3) methods which are used to determine the magnetic field direction.

[CLO1:C2]

(9 marks)

c) A closed magnetic circuit of cast steel has a sectional area of 2cm^2 . A coil of 400 turns is wound around the 5cm length of the circuit and a current of 3A flows. Calculate the flux density in the circuit if the relative permeability of the cast steel is 700.

[CLO2:C3]

(6 marks)

d) By using an appropriate diagram, explain the Faraday's First Law.

[CLO2:C2] (5 marks)