SULIT ## BAHAGIAN PEPERIKSAAN DAN PENILAIAN JABATAN PENDIDIKAN POLITEKNIK KEMENTERIAN PENDIDIKAN TINGGI JABATAN KEJURUTERAAN AWAM PEPERIKSAAN AKHIR SESI JUN 2016 CC606: HYDROLOGY TARIKH : 31 OKTOBER 2016 MASA : 11.15 AM - 1.15 PM (2 JAM) Kertas ini mengandungi SEBELAS (11) halaman bercetak. Bahagian A: Soalan Pendek (10 soalan) Bahagian B: Struktur (4 soalan) Dokumen sokongan yang disertakan: Manual 'MASMA' # JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIARAHKAN (CLO yang tertera hanya sebagai rujukan) **SULIT** **SECTION A: 40 MARKS** BAHAGIAN A: 40 MARKAH #### **INSTRUCTION:** This section consists of TEN (10) short questions. Answer ALL questions. #### ARAHAN: Bahagian ini mengandungi SEPULUH (10) soalan pendek. Jawab SEMUA soalan. #### **QUESTION 1** #### SOALAN 1 CLO1 C1 (a) With the aid of a sketch, describe briefly the followings: Dengan bantuan lakaran, jelaskan secara ringkas proses berikut: - i. EvaporationSejatan - ii. Infiltration Penyusupan [4 marks] [4 markah] #### **QUESTION 2** #### SOALAN 2 CLO1 C2 (a) Briefly explain **TWO** (2) effects of soil changes due to human activities towards the hydrological cycles. Terangkan secara ringkas **DUA** (2) kesan perubahan tanah akibat daripada aktiviti manusia ke atas kitaran hydrology. [4 marks] [4 markah] #### **QUESTION 3** #### SOALAN 3 CLO1 C3 The intensity of 150 mm/hr rainfall fell on a catchment area of 300 ha for 8 hours. The runoff measured during this period was recorded to be 780×10^3 m³. Calculate the amount of water lost from the total of 8 hours rainfall. Keamatan hujan sebanyak 150 mm/jam telah menimpa satu kawasan tadahan seluas 300 hektar selama 8 jam. Air larian sepanjang tempoh tersebut telah direkodkan sebanyak 780 x 10^3 m³. Kira jumlah kehilangan air sepanjang tempoh 8 jam itu. [4 marks] [4 markah] ## QUESTION 4 SOALAN 4 CLO1 C1 Precipitation can be divided into liquid and frozen, state TWO (2) types of these precipitation. Curahan boleh terbahagi ke dalam cecair dan beku , nyatakan **DUA(2)** jenis curahan tersebut. [4 marks] [4 markah] ## **QUESTION 2** ## SOALAN 2 CLO₂ C4 Streamflow hydrograph generated from rainfall event occurs on a 100 hectare (a) catchment area. The catchment is given in Table B2. The baseflow for the river is estimated at 2.5 m³/s. Determine the following: Hidrograf kadaralir sungai yang dihasilkan oleh suatu peristiwa hujan daripada kawasan tadahan seluas 100 hektar diberikan dalam Jadual B2. Dianggarkan aliran dasar untuk sungai tersebut ialah 2.5m³/s. Tentukan i.) Volume of Direct runoff Isipadu air larian permukaan [3 marks] [3 markah] ii.)Depth of Effective rainfall Kedalaman hujan efektif perkara berikut: [3 marks] [3 markah] iii.)Unit hydrograph for the catchment Unit hidrograf kawasan tadahan. [14 marks] [14 markah] Table B2/Jadual B2 | Time (hour) Masa (jam) | Streamflow Discharge (m³/s) <i>Kadar Alir (m³/s)</i> | | | | | |------------------------|--|--|--|--|--| | 0 | 2.5 | | | | | | 0.15 | 9.5 | | | | | | 0.30 | 11.5 | | | | | | 0.45 | 18.5 | | | | | | 1.00 | 29.5 | | | | | | 1.15 | 40.5 | | | | | | 1.30 | 48.5
55.5 | | | | | | 1.45 | | | | | | | 2.00 | 50.5 | | | | | | 2.15 | 41.5 | | | | | | 2.30 | 33.5 | | | | | | 2.45 | 28.5 | | | | | | 3.00 | 19.5 | | | | | | 3.15 | 13.5 | | | | | | 3.30 | 9.5 | | | | | | 3.45 | 5.5 | | | | | | 4.00 | 2.5 | | | | | ## QUESTION 5 SOALAN 5 CLO1 C2 Rainfall characteristic can be divided into FOUR (4) categories such as depth, duration, intensity and frequency. Explain briefly the term rain intensity. Ciri-ciri air hujan terbahagi kepada *EMPAT* (4) iaitu kedalaman, tempoh masa, intensity dan frekuensi. Terangkan maksud intensiti hujan. [4 marks] [4 markah] # QUESTION 6 SOALAN 6 CLO1 C3 In year 1983, data at station A was missing due to faulty gauge as shown in **Table A6.** Calculate the missing data at station A using Normal Ratio Method. Dalam tahun 1983, data pada station A telah hilang disebabkan oleh kecuaian alat di dalam **Jadual A6**. Kirakan nilai data yang hilang pada station A menggunakan kaedah nisbah normal. Table A6 / Jadual A6 | Station No. | Gauge Reading (mm) | Annual Normal Rainfall | |-------------|--------------------|------------------------| | No. Stesen | Bacaan Tolok (mm) | Reading (mm) | | | | Bacaan Hujan Normal | | | | Tahunan (mm) | | A | ? | 880 | | В | 96 | 1008 | | С | 84 | 842 | | D | 112 | 1080 | [4 marks] [4 markah] | QUESTION 7 SOALAN 7 CLO1 Define the term surface runoff. C1 Takrifkan air larian permukaan. [4 marks] | , | |---|---| | CLO1 Define the term surface runoff. C1 Takrifkan air larian permukaan. [4 marks] | | | C1 Takrifkan air larian permukaan. [4 marks] | , | | C1 Takrifkan air larian permukaan. [4 marks] | • | | [4 marks] | , | | | | | [4 markah] | | | | | | QUESTION 8 SOALAN 8 | | | SOALAN 8 | | | CLO1 Define the term Hydrograph Unit (UH). | | | C1 Takrifkan maksud Unit Hidrograf (UH). | | | [4 marks] | | | [4 markah] | | | QUESTION 9 | | | SOALAN 9 | | | | | | CLO1 Describe TWO (2) main reasons of flood routing. C2 Terangkan DUA (2) tujuan utama penyaluran banjir | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | [4 marks] | | | [4 markah] | | | QUESTION 10 | | | SOALAN 10 | | | | | | CLO1 Determine the value of coefficient for Intensity Duration Frequency (IDF) | | | C2 Polynomial Equations, for Melaka if the Average Recurrence Interval (ARI) is | | | 5 years. | | | Tentukan nilai pekali Persamaan Polinomial IDF untuk Melaka jika kala | · | | ulang kembali (ARI) adalah 5 tahun. | | | [4 marks] | | | [4 markah] | | | | | **SECTION B: 60 MARKS** BAHAGIAN B: 60 MARKAH #### **INSTRUCTION:** This section consists of FOUR (4) structured questions. Answer THREE (3) questions only. #### ARAHAN: Bahagian ini mengandungi **EMPAT (4)** soalan berstruktur. Jawab **TIGA (3)** soalan sahaja. #### **QUESTION 1** #### SOALAN 1 CLO2 C3 (a) Based on **Table B1(a)**, a storm event with 10.0 cm of rainfall produced a direct runoff of 5.8 cm over a certain catchment area. Calculate the ϕ -index and rainfall excess for the catchment using the rainfall data given below in **Table B1(a)**. Berdasarkan Jadual B1(a), satu peristiwa ribut dengan hujan sebanyak 10.0 cm telah menghasilkan sebanyak 5.8 cm air larian permukaan bagi satu kawasan tadahan. Kirakan nilai indeks- ϕ dan lebihan hujan bagi kawasan tadahan tersebut dengan menggunakan data di bawah di dalam Jadual B1(a) Table B1(a) / Jadual B1(a) | Time (hr) | | 0 | | | _ | | | | |---------------|-----|-----|-----|-----|-----|-----|-----|-----| | Masa (jam) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | Rainfall (cm) | 0.4 | 0.0 | 1.5 | 0.2 | 1.0 | 1.6 | 1.0 | 0.7 | | Hujan (cm) | 0.4 | 0.9 | 1.5 | 2.3 | 1.8 | 1.6 | 1.0 | 0.5 | [10 marks] [10 markah] CLO2 C4 (b) Based on **Table B1(b)**, estimate the net runoff and total rainfall for the following data if ϕ -index for the storm is 3.5 cm/hr. Berdasarkan **Jadual B1(b)**, anggarkan jumlah air larian permukaan dan jumlah hujan bagi data berikut jika indeks-φ bagi hujan tersebut adalah 3.5 cm/jam. Table B1(b) / Jadual B1(b) | Time (min) Masa (min) | 0 | 30 | 60 | 90 | 120 | 150 | |---|---|-----|-----|------|-----|-----| | Rainfall intensity (cm/hr) Keamatan hujan (cm/jam) | 0 | 2.5 | 5.0 | 15.0 | 8.5 | 3.0 | [10 marks] [10 markah] # QUESTION 3 SOALAN 3 CLO2 C4 By using Muskingum method, calculate the hydrograph outflow, with x=0.2 and K=20 hours. Assume that the initial inflow equals to outflow for the first day. Dengan menggunakan kaedah Muskingham, kirakan aliran keluar dengan x=0.2 dan K=20 jam. Anggapkan aliran keluar awalan sama dengan hari pertama. Table B3 Jadual B3 | Time (hr)
Masa (Jam) | Inflow (ft ³ /s) Aliran masuk (ft ³ /s) | |-------------------------|--| | 12 | 100 | | 24 | 320 | | 36 | 700 | | 48 | 520 | | 60 | 380 | | 72 | 300 | | 84 | 200 | | 96 | 160 | | 108 | 120 | | 120 | 40 | [20 marks] [20 markah] #### **QUESTION 4** #### SOALAN 4 Data shows the information for a residential area in Kota Bharu, Kelantan with the housing characteristics are given as follows: Data menunjukkan informasi bagi kawasan kediaman di Kota Bharu, Kelantan dengan ciri-ciri berikut: Residential Area = 10 Hectares Kawasan Penduduk = 10 hektar Density Residential Area = Medium Density Ketumpatan Penduduk = berketumpatan sederhana Drainage Types = Minor Drainage Jenis Saliran = Saliran minor Flow On The Ground = 80 m Aliran di atas Tanah = 80m The Flow Channel = 400 m Aliran di dalam Saluran = 400m The Slope of The Catchment Area = 0.5% Kecerunan Kawasan = 0.5% ARI = 5 years Assume Velocity = 1.0 m/s Halaju Anggaran = 1.0 m/s CLO₂ C3 C5 (a) Calculate the time of concentration for the area. Kirakan masa tumpuan bagi kawasan tersebut [6 marks] [6 markah] CLO2 (b) Estimate the peak flow value for the area. Anggarkan aliran puncak bagi kawasan tersebut [14 marks] [14 markah] **SOALAN TAMAT** Table 0.1 Design Storm ARIs for Urban Stormwater Systems | Type of Development | Average Recurrence Interval (ARI) of Design Storr (year) | | | | | | |--|--|------------------------------------|--|--|--|--| | (See Note 1) | | Quantity | Quality | | | | | | Minor
System | Major System
(see Note 2 and 3) | | | | | | Open Space, Parks and Agricultural Land in urban areas | 1 | up to 100 | 3 month ARI
(for all types of
development) | | | | | Residential: | | | | | | | | Low density | 2 | up to 100 | | | | | | Medium density | 5 | up to 100 | | | | | | High density | 10 | up to 100 | | | | | | Commercial, Business and Industrial — Other than CBD | 5 | up to 100 | | | | | | Commercial, Business, Industrial in Central
Business District (CBD) areas of Large Cities | 10 | up to 100 | | | | | #### Notes: - (1) If a development falls under two categories then the higher of the applicable storm ARIs from the Table shall be adopted. - (2) The required size of trunk drains within the major drainage system, varies. According to current practices the trunk drains are provided for the areas larger than 40 ha. Proceeding downstream in the drainage system, a point may be reached where it becomes necessary to increase the size of the trunk drain in order to limit the magnitude of "gap flows" as described in Section 0.Error! Bookmark not defined.. Error! Bookmark not defined.. - (3) Ideally, the selection of design storm ARI should also be on the basis of economic efficiency. In practice, however, economic efficiency is typically replaced by the concept of the level of protection. In the case where the design storm for higher ARI would be impractical, then the selection of appropriate ARI should be adjusted to optimise the ratio cost to benefit or social factors. Consequently lower ARI should be adopted for the major system, with consultation and approval from Local Authority. However, the consequences of the higher ARI shall be investigated and made known. Even though the stormwater system for the existing developed condition shall be designed for a lower ARI storm, the land should be reserved for higher ARI, so that the system can be upgraded when the area is built up in the future. - (4) Habitable floor levels of buildings shall be above the 100 year ARI flood level. - (5) In calculating the discharge from the design storm, allowance shall be made for any reduction in discharge due to quantity control (detention or retention) measures installed as described in Section 0.**Error! Bookmark not defined.**. Design Chart 0.1 Nomograph for Estimating Overland Sheet Flow Times (Source: AR&R, 1977) (Overland Sheet Flow Times - Shallow Sheet Flow Only) Design Chart 0.2 Kerb Gutter Flow Time - The lower limit of the durations analysed was 15 minutes. DID should expedite the installation of digital pluviometers to capture data from short storm bursts, down to 5 minutes duration. - The limits of rainfall ARI were between 2 years and 100 years. - The curves were not in a convenient form for use in modern computer models. - There was no guidance given for urban areas outside the 42 centres listed. It is recommended that the curves should be updated by DID to incorporate additional data and extend the coverage as outlined above. ## 0.0.1 IDF Curves for Other Urban Areas IDF curves are calculated from local pluviometer data. Recognising that the precipitation data used to derive the above were subject to some interpolation and smoothing, it is desirable to develop IDF curves directly from local rain-gauge records if these records are sufficiently long and reliable. The analyses involve the following steps: Data Series (identification) ↓ Data Tests ↓ Distribution Identification Usundulon taentirication ↓ Estimation of Distribution Parameters ↓ Selection of Distribution Quantile Estimation at chosen ARI The required analyses are highly specialised and would be outside the scope of interest of most users of this Manual. Local authorities are advised to find out from the DID to the availability of IDF curves or coefficients for their respective areas, or to obtain local pluviometer data for those wishing to conduct their own analysis. ## 0.0.2 Polynomial Approximation of IDF Curves Polynomial expressions in the form of Equation 0.1 have been fitted to the published IDF curves for the 35 main cities/towns in Malaysia. $$ln(^{R}I_{t}) = a + b ln(t) + c(ln(t))^{2} + d(ln(t))^{3}$$ (0.1) where, $^{\it R}I_t$ = the average rainfall intensity (mm/hr) for ARI and duration t R = average return interval (years) t = duration (minutes) \boldsymbol{a} to \boldsymbol{d} are fitting constants dependent on ARI. Four coefficients are considered in Equation 0.1 to keep the calculation simple for a reasonable degree of accuracy. Higher degree of polynomial can be used to get more accurate values of rainfall intensity. The Equation can be used for deriving rainfall intensity values for a given duration and ARI, once the values of coefficients a to d are known. The equation is in a more suitable form for most spreadsheet of computer calculation procedures. The curves in "Hydrological Data" (1991) are valid for durations between 15 minutes and 72 hours. Extrapolation of the curve beyond these limits introduces possible errors, and is not recommended. Also, Equation 0.1 should not be used outside these limits. Alternative procedures for deriving IDF values for short durations are given in Section 0.0.3. The possible uncertainty range of the IDF figures derived in accordance with this Manual is likely to be up to \pm 20%. Among the sources of error noted are: problems of extrapolation to long ARIs, use of local rather than generalised analysis, and problems with the accuracy of short-duration intensity records. The error is likely to be highest for the durations shorter than 30 minutes and longer than 15 hours, and for ARI longer than 50 years. For particularly critical applications it may be appropriate to conduct sensitivity tests for the effects of design rainfall errors. Table 0.2 gives values of the fitted coefficients in Equation 0.1 for Kuala Lumpur, for rainfall ARIs between 2 years and 100 years and durations within 30 to 1000 minutes (see Figure 0.1 for the graphs). Appendix 0.A gives derived values of the coefficients in Equation 0.1 for the 26 and 10 urban centres in Peninsular and East Malaysia, respectively. Due to irregular shape of the curves, coefficients for 6 other urban centres in East Malaysia are not suitable to be used in Equation 0.1. IDF values for these 6 stations should be taken from their respective curves available in HP-26 (1983). Table 0.2 Coefficients of the Fitted IDF Equation for Kuala Lumpur | ARI (years) | a | ь | С | d | |-------------|--------|--------|---------|--------| | 2 | 5.3255 | 0.1806 | -0.1322 | 0.0047 | | 5 | 5.1086 | 0.5037 | -0.2155 | 0.0112 | | 10 | 4.9696 | 0.6796 | -0.2584 | 0.0147 | | 20 | 4.9781 | 0.7533 | -0.2796 | 0.0166 | | 50 | 4.8047 | 0.9399 | -0.3218 | 0.0197 | | 100 | 5.0064 | 0.8709 | -0.307 | 0.0186 | (data period 1953 – 1983); Validity: $30 \le t \le 1000$ minutes ## APPENDIX 0.A FITTED COEFFICIENTS FOR IDF CURVES FOR 35 URBAN CENTRES Table 0.A1 Coefficients for the IDF Equations for the Different Major Cities and Towns in Malaysia ($30 \le t \le 1000 \text{ min}$) | Chal | Location | Data Pariod | ARI | Coefficients of the IDF Polynomial Equations | | | | |--------------|------------------|-------------|--------|--|------------------------|---------|---------| | State | Location | Data Period | (year) | a | b | С | d | | | | | 2 | 4.6800 | 0.4719 | -0.1915 | 0.0093 | | | | | 5 | 5.7949 | -0.1944 | -0.0413 | -0.000 | | Perlis | Kangar | 1960-1983 | 10 | 6.5896 | -0.6048 | 0.0445 | -0.006 | | | 3 | | 20 | 6.8710 | -0.6670 | 0.0478 | -0.005 | | | | | 50 | 7.1137 | -0.7419 | 0.0621 | -0.006 | | | | | 100 | 6.5715 | -0.2462 | -0.0518 | 0.0016 | | | | | 2 | 5.6790 | -0.0276 | -0.0993 | 0.0033 | | | | | 5 | 4.9709 | 0.5460 | -0.2176 | 0.0113 | | Kedah | Alor Setar | 1951-1983 | 10 | 5.6422 | 0.1575 | -0.1329 | 0.0056 | | | | | 20 | 5.8203 | 0.1093 | -0.1248 | 0.0053 | | | | 50 | 5.7420 | 0.2273 | -0.1481 | 0.0068 | | | | | | 100 | 6.3202 | -0.0778 | -0.0849 | 0.0026 | | | | | 2 | 4.5140 | 0.6729 | -0.2311 | 0.0118 | | | | | 5 | 3.9599 | 1.1284 | -0.3240 | 0.0180 | | Pulau Pinang | Penang | 1951-1990 | 10 | 3.7277 | 1.4393 | -0.4023 | 0.0241 | | | | | 20 | 3.3255 | 1.7689 | -0.4703 | 0.0286 | | | | | 50 | 2.8429 | 2.1456 | -0.5469 | 0.0335 | | | | | 100 | 2.7512 | 2.2417 | -0.5610 | 0.0341 | | | | | 2 | 5.2244 | 0.3853 | -0.1970 | 0.0100 | | | Ipoh | 1951-1990 | 5 | 5.0007 | 0.6149 | -0.2406 | 0.0127 | | Perak | | | 10 | 5.0707 | 0.6515 | -0.2522 | 0.0138 | | | | | 20 | 5.1150 | 0.6895 | -0.2631 | 0.0147 | | | | | 50 | 4.9627 | 0.8489 | -0.2966 | 0.0169 | | | | | 100 | 5.1068 | 0.8168 | -0.2905 | 0.0165 | | | | | 2 | 4.1689 | 0.8160 | -0.2726 | 0.0149 | | | | 1960-1983 | 5 | 4.7867 | 0.4919 | -0.1993 | 0.0099 | | Perak | Bagan Serai | | 10 | 5.2760 | 0.2436 | -0.1436 | 0.0059 | | Clar | | | 20 | 5.6661 | 0.0329 | -0.0944 | 0.0024 | | | | | 50 | 5.3431 | 0.3538 | -0.1686 | 0.0078 | | | | | 100 | 5.3299 | 0.4357 | -0.1857 | 0.0089 | | | | | 2 | 5.6134 | -0.1209 | -0.0651 | 0.0000 | | | | | 5 | 6.1025 | -0.2240 | -0.0484 | -0.000 | | Perak | Teluk Intan | 1960-1983 | 10 | 6.3160 | -0.2756 | -0.0390 | -0.0012 | | relak | Teluk Illali | 1300,1303 | 20 | 6.3504 | -0.2498 | -0.0377 | -0.0012 | | | | | 50 | 6.7638 | -0.4595 | 0.0094 | -0.0010 | | | | | 100 | 6.7375 | -0.4595 | -0.0070 | -0.0030 | | | | | | | K 1000 000 000 000 000 | | | | | | | 5 | 4.2114 | 0.9483
0.5803 | -0.3154 | 0.0179 | | Damele | Vuela Varance | 1060 1002 | | 4.7986 | | -0.2202 | 0.0107 | | Perak | Kuala Kangsar | 1960-1983 | 10 | 5.3916 | 0.2993 | -0.1244 | 0.0071 | | | | | 20 | 5.7854 | 0.1175 | -0.1244 | 0.00002 | | | | | 50 | 6.5736 | -0.2903 | | 0.0000 | | | | | 100 | 6.0681 | 0.1478 | -0.1435 | | | | | | 2 | 5.0790 | 0.3724 | -0.1796 | 0.0081 | | | 0.11 | 1051 1000 | 5 | 5.2320 | 0.3330 | -0.1635 | 0.0068 | | Perak | Setiawan | 1951-1990 | 10 | 5.5868 | 0.0964 | -0.1014 | 0.0021 | | | | | 20 | 5.5294 | 0.2189 | -0.1349 | 0.0051 | | | | | 50 | 5.2993 | 0.4270 | -0.1780 | 0.0082 | | | | | 100 | 5.5575 | 0.3005 | -0.1465 | 0.0058 | | | | | 2 | 4.2095 | 0.5056 | -0.1551 | 0.0044 | | | | | 5 | 5.1943 | -0.0350 | -0.0392 | -0.0034 | | Selangor | Kuala Kubu Bahru | 1970-1990 | 10 | 5.5074 | -0.1637 | -0.0116 | -0.0053 | | rost | | | 20 | 5.6772 | -0.1562 | -0.0229 | -0.0040 | | | | | 50 | 6.0934 | -0.3710 | 0.0239 | -0.0073 | | | | | 100 | 6.3094 | -0.4087 | 0.0229 | -0.0068 | (Continued) Table 0.A1 Coefficients for the IDF Equations for the Different Major Cities and Towns in Malaysia ($30 \le t \le 1000 \text{ min}$) | State | Location | Data Period | ARI | Coefficie | nts of the II | OF Polynomia | al Equati | |---------------------------|--------------|-------------|----------|-----------|-------------------|--------------|-----------| | | - January | | (year) | a | b | С | | | | | | 2 | 5.3255 | 0.1806 | -0.132 | 2 0.0 | | Endoral Torritor | 12 | | 5 | 5.1086 | 0.5037 | | | | Federal Territory | Kuala Lumpur | 1953-1983 | 10 | 4.9696 | 0.6796 | | | | | | | 20 | 4.9781 | 0.7533 | | | | | | | 50 | 4.8047 | 0.9399 | | | | | | | 100 | 5.0064 | 0.8709 | | - | | | | | 2 | 3.7091 | 1.1622 | | | | Malagas | | | 5 | 4.3987 | 0.7725 | | | | Malacca | Malacca | 1951-1990 | 10 | 4.9930 | 0.4661 | -0.1740 | | | | | | 20 | 5.0856 | 0.5048 | -0.1740 | | | | | | 50 | 4.8506 | 0.7398 | -0.1873 | | | | | | 100 | 5.3796 | 0.4628 | | | | | | | 2 | 5.2565 | 0.0719 | -0.1826 | | | N | | | 5 | 5.4663 | | -0.1306 | | | Negeri Sembilan | Seremban | 1970-1990 | 10 | 6.1240 | 0.0586
-0.2191 | -0.1269 | 0.00 | | 1 | | | 20 | 6.3733 | -0.2191 | -0.0820 | 0.00 | |) | | | 50 | 6.9932 | -0.2451 | -0.0888 | 0.00 | | | | | 100 | 7.0782 | | -0.0479 | 0.00 | | | | | 2 | 3.9982 | -0.4277
0.9722 | -0.0731 | 0.005 | | Na Contra | Kuala Pilah | | 5 | 3.7967 | | -0.3215 | 0.018 | | Negeri Sembilan | | 1970-1990 | 10 | 4.5287 | 1.2904 | -0.4012 | 0.024 | | | | | 20 | 4.9287 | 0.8474 | -0.3008 | 0.017 | | | | | 50 | 4.7768 | 0.6897 | -0.2753 | 0.016 | | | | | 100 | | 0.8716 | -0.3158 | 0.019 | | | | | 2 | 4.6588 | 1.0163 | -0.3471 | 0.021 | | | Kluang | | 5 | 4.5860 | 0.7083 | -0.2761 | 0.017 | | Johor | | 1976-1990 | 10 | 5.0571 | 0.4815 | -0.2220 | 0.013 | | | | | 20 | 5.2665 | 0.4284 | -0.2131 | 0.012 | | | | | 50 | 5.4813 | 0.3471 | -0.1945 | 0.011 | | | | | 100 | 5.8808 | 0.1412 | -0.1498 | 0.008 | | | | | 2 | 6.3369 | -0.0789 | -0.1066 | 0.0059 | | | | 1951-1990 | 5 | 5.1028 | 0.2883 | -0.1627 | 0.0095 | | Johor | Mersing | | 10 | 5.7048 | -0.0635 | -0.0771 | 0.0036 | | | | | 20 | 5.8489 | -0.0890 | -0.0705 | 0.0032 | | | | | 50 | 4.8420 | 0.7395 | -0.2579 | 0.0165 | | | | | 100 | 6.2257 | -0.1499 | -0.0631 | 0.0032 | | | | | - | 6.7796 | -0.4104 | -0.0160 | 0.0005 | | | | | 2 | 4.5023 | 0.6159 | -0.2289 | 0.0119 | | Johor | Batu Pahat | 1960-1983 | 5 | 4.9886 | 0.3883 | -0.1769 | 0.0085 | | | | 1900 1900 | 10 | 5.2470 | 0.2916 | -0.1575 | 0.0074 | | | | - | 20 | 5.7407 | 0.0204 | -0.0979 | 0.0032 | | | | _ | 50 | 6.2276 | -0.2278 | -0.0474 | 0.00002 | | | | | 100 | 6.5443 | -0.3840 | -0.0135 | -0.0022 | | | 1 | <u> </u> | 2 | 3.8645 | 1.1150 | -0.3272 | 0.0182 | | Johor | Johor Bahru | 1060 1002 | 5 | 4.3251 | 1.0147 | -0.3308 | 0.0205 | | 200 mark of the 40 CT 200 | John Dalii u | 1960-1983 | 10 | 4.4896 | 0.9971 | -0.3279 | 0.0205 | | | | <u> </u> | 20 | 4.7656 | 0.8922 | -0.3060 | 0.0192 | | | | | 50 | 4.5463 | 1.1612 | -0.3758 | 0.0249 | | | | | 100 | 5.0532 | 0.8998 | -0.3222 | 0.0215 | | | | | 2 | 3.0293 | 1.4428 | -0.3924 | 0.0232 | | Johor | Sogamat | 1070 | 5 | 4.2804 | 0.9393 | -0.3161 | 0.0200 | | - 51101 | Segamat | 1970-1983 | 10 | 6.2961 | -0.1466 | | 0.0080 | | | | | 20 | 7.3616 | -0.6982 | | 0.0080 | | | | | 50 | 7.4417 | -0.6247 | | 0.0021 | | | 1 | | AND 1000 | | -0.9379 | 0.0176 | 0.0041 | Table 0.A1 Coefficients for the IDF Equations for the Different Major Cities and Towns in Malaysia ($30 \le t \le 1000 \text{ min}$) | Ctata | Location | Data Davida | ARI | Coefficient | Coefficients of the IDF Polynomial Equations | | | | |--------------------------|---|-------------|--------|-------------|--|---------|--------|--| | State | Location | Data Period | (year) | а | b | С | d | | | | | | 2 | 4.3716 | 0.3725 | -0.1274 | 0.0026 | | | | | | 5 | 4.5461 | 0.4017 | -0.1348 | 0.0036 | | | Pahang | Raub | 1966-1983 | 10 | 5.4226 | -0.1521 | -0.0063 | -0.005 | | | J | | | 20 | 5.2525 | 0.0125 | -0.0371 | -0.003 | | | | | | 50 | 4.8654 | 0.3420 | -0.1058 | 0.0012 | | | | | | 100 | 5.1818 | 0.2173 | -0.0834 | 0.000 | | | | | | 2 | 4.9396 | 0.2645 | -0.1638 | 0.008 | | | | | | 5 | 4.6471 | 0.4968 | -0.2002 | 0.0099 | | | Pahang | Cameron Highland | 1951-1990 | 10 | 4.3258 | 0.7684 | -0.2549 | 0.013 | | | • | | | 20 | 4.8178 | 0.5093 | -0.2022 | 0.010 | | | | | | 50 | 5.3234 | 0.2213 | -0.1402 | 0.0059 | | | | | | 100 | 5.0166 | 0.4675 | -0.1887 | 0.0089 | | | | | | 2 | 5.1899 | 0.2562 | -0.1612 | 0.0096 | | | | | | 5 | 4.7566 | 0.6589 | -0.2529 | 0.016 | | | Pahang | Kuantan | 1951-1990 | 10 | 4.3754 | 0.9634 | -0.3068 | 0.019 | | | | | | 20 | 4.8517 | 0.7649 | -0.2697 | 0.017 | | | | | | 50 | 5.0350 | 0.7267 | -0.2589 | 0.0167 | | | | | | 100 | 5.2158 | 0.6752 | -0.2450 | 0.015 | | | Pahang | | 1970-1983 | 2 | 4.6023 | 0.4622 | -0.1729 | 0.0066 | | | | | | 5 | 5.3044 | 0.0115 | -0.0590 | -0.001 | | | | Temerloh | | 10 | 4.5881 | 0.5465 | -0.1646 | 0.0049 | | | | | | 20 | 4.4378 | 0.7118 | -0.1960 | 0.0068 | | | | | | 50 | 4.4823 | 0.8403 | -0.2288 | 0.0095 | | | | | | 100 | 4.5261 | 0.7210 | -0.1988 | 0.0071 | | | | Kuala Dungun | | 2 | 5.2577 | 0.0572 | -0.1091 | 0.0057 | | | | | | 5 | 5.5077 | -0.0310 | -0.0899 | 0.0050 | | | Terengganu | | 1971-1983 | 10 | 5.4881 | 0.0698 | -0.1169 | 0.0074 | | | | | 1371 1303 | 20 | 5.6842 | -0.0393 | -0.0862 | 0.0051 | | | | | | 50 | 5.5773 | 0.1111 | -0.1231 | 0.0081 | | | | | | 100 | 6.1013 | -0.1960 | -0.0557 | 0.0035 | | | | | | 2 | 4.6684 | 0.3966 | -0.1700 | 0.0096 | | | | | | 5 | 4.4916 | 0.6583 | -0.2292 | 0.0143 | | | Terengganu | Kuala Terengganu | 1951-1983 | 10 | 5.2985 | 0.2024 | -0.1380 | 0.0089 | | | ಚಾನೆ | | | 20 | 5.8299 | -0.0935 | -0.0739 | 0.0046 | | | | | İ | 50 | 6.1694 | -0.2513 | -0.0382 | 0.0021 | | | | | | 100 | 6.1524 | -0.1630 | -0.0575 | 0.0035 | | | | | | 2 | 5.4683 | 0.0499 | -0.1171 | 0.0070 | | | | | | 5 | 5.7507 | -0.0132 | -0.1117 | 0.0078 | | | Kelantan | Kota Bharu | 1951-1990 | 10 | 5.2497 | 0.4280 | -0.2033 | 0.0139 | | | | 5 Samuel Samuel De (1997) (1997) (1997) | | 20 | 5.4724 | 0.3591 | -0.1810 | 0.0119 | | | | | | 50 | 5.3578 | 0.5094 | -0.2056 | 0.0131 | | | | | | 100 | 5.0646 | 0.7917 | -0.2583 | 0.0161 | | | | | | 2 | 4.6132 | 0.6009 | -0.2250 | 0.0114 | | | | | ŀ | 5 | 3.8834 | 1.2174 | -0.3624 | 0.0213 | | | Kelantan | Gua Musang | 1971-1990 | 10 | 4.6080 | 0.8347 | -0.2848 | 0.0161 | | | ecolos contractores EDDO | | | 20 | 4.7584 | 0.7946 | -0.2749 | 0.0154 | | | | | | 50 | 4.6406 | 0.9382 | -0.3059 | 0.0176 | | | | | | 100 | 4.6734 | 0.9782 | -0.3152 | 0.0183 | | (Continued) Table 0.A1 Coefficients for the IDF Equations for the Different Major Cities and Towns in Malaysia ($30 \le t \le 1000 \text{ min}$) | State | Location | Data Period | ARI | Coefficie | nts of the I | F Polynomia | I Equation: | |---------|---------------|--------------|--------|-----------|-------------------|-------------|-------------| | | | Data i criod | (year) | а | b | С | d | | | | | 2 | 5.1968 | 0.0414 | | | | 0-11 | | | 5 | 5.6093 | -0.1034 | | | | Sabah | Kota Kinabalu | 1957-1980 | 10 | 5.9468 | -0.2595 | | | | | | | 20 | 5.2150 | 0.3033 | -0.1164 | | | | | | 50 | 5.1922 | 0.3652 | -0.1224 | | | | | | 2 | 3.7427 | 1.2253 | -0.3396 | | | Sabah | | | 5 | 4.9246 | 0.5151 | -0.1886 | | | | Sandakan | 1957-1980 | 10 | 5.2728 | 0.3693 | -0.1624 | | | | | | 20 | 4.9397 | 0.6675 | -0.2292 | | | | | | 50 | 5.0022 | 0.6587 | -0.2195 | 0.013 | | | | | 2 | 4.1091 | 0.6758 | -0.2193 | 0.012 | | 6.1.1 | | | 5 | 3.1066 | 1.7041 | -0.2122 | 0.0093 | | Sabah | Tawau | 1966-1978 | 10 | 4.1419 | 1.1244 | -0.4717 | 0.0298 | | | | | 20 | 4.4639 | 1.0439 | -0.3317 | 0.0220 | | J | | | 2 | 4.1878 | 0.9320 | | 0.0220 | | 0.1.1 | Kuamut | 1969-1980 | 5 | 3.7522 | 1.3976 | -0.3115 | 0.0183 | | Sabah | | | 10 | 4.1594 | 1.2539 | -0.4086 | 0.0249 | | | | | 20 | 3.8422 | 1.5659 | -0.3837 | 0.0236 | | | | | 50 | 5.6274 | | -0.4505 | 0.0282 | | | | | 100 | 6.3202 | 0.3053 | -0.1644 | 0.0079 | | | | | 2 | 4.3333 | -0.0778
0.7773 | -0.0849 | 0.0026 | | | | | 5 | 4.9834 | 0.7773 | -0.2644 | 0.0144 | | Sarawak | Simanggang | 1963-1980 | 10 | 5.6753 | 0.4624 | -0.1985 | 0.0100 | | | | | 20 | 5.9006 | -0.0189 | -0.1097 | 0.0038 | | | | 1962-1980 | 2 | 3.0879 | 1.6430 | -0.0922 | 0.0027 | | | | | 5 | 3.4519 | 1.4161 | -0.4472 | 0.0262 | | Sarawak | Sibu | | 10 | 3.6423 | 1.3388 | -0.3754 | 0.0200 | | | | | 20 | 3.3170 | 1.5906 | -0.3509 | 0.0177 | | | | | 2 | 5.2707 | 0.1314 | -0.3955 | 0.0202 | | | | | 5 | 5.5722 | 0.0563 | -0.0976 | 0.0025 | | Sarawak | Bintulu | 1953-1980 | 10 | 6.1060 | -0.2520 | -0.0919 | 0.0031 | | | | | 20 | 6.0081 | -0.2320 | -0.0253 | -0.0012 | | | | | 50 | 6.2652 | -0.1173 | -0.0574 | 0.0014 | | | | | 2 | 3.2235 | 1.2714 | -0.0244 | -0.0008 | |) | | | 5 | 4.5416 | 0.2745 | -0.3268 | 0.0164 | | Sarawak | Kapit | 1964-1974 | 10 | 4.5184 | 0.2886 | -0.0700 | -0.0032 | | | W. 100 | | 20 | 5.0785 | -0.0820 | -0.0600 | -0.0045 | | | | | 2 | 5.1719 | 0.1558 | 0.0296 | -0.0110 | | | Mineral Sale | | 5 | 4.8825 | 0.3871 | -0.1093 | 0.0043 | | Sarawak | Kuching | 1951-1980 | 10 | 5.1635 | 0.2268 | -0.1455 | 0.0068 | | | | | 20 | 5.2479 | 0.2268 | -0.1039 | 0.0039 | | | | | 50 | 5.2780 | | -0.0968 | 0.0035 | | | | | 2 | 4.9302 | 0.2240
0.2564 | -0.0932 | 0.0031 | | | | | 5 | 5.8216 | | -0.1240 | 0.0038 | | Sarawak | Miri | 1953-1980 | 10 | 6.1841 | -0.2152 | -0.0276 | -0.0021 | | | | | 20 | | -0.3856 | 0.0114 | -0.0048 | | | | 4 | 20 | 6.1591 | -0.3188 | 0.0021 | -0.0044 | Figure 0.1 IDF Curves for Kuala Lumpur #### 0.0.3 IDF Values for Short Duration Storms It is recommended that Equation 0.1 be used to derive design rainfall intensities for durations down to a lower limit of 30 minutes. This value corresponds to the original range of durations used in deriving the curves. Estimation of rainfall intensities for durations between 5 and 30 minutes involves extrapolation beyond the range of the data used in deriving the curve fitting coefficients. The recommended method of extending the data is based on HP No.1-1982, which gives a rainfall depth-duration plotting graph for durations between 15 minutes and 3 hours. This graphical procedure was converted into an equation and extended as described below. An additional adjustment for storm intensity was included based on the method used in "PNG Flood Estimation Manual" (SMEC, 1990), for tropical climates similar to Malaysia. This adjustment uses the 2 year, 24-hour rainfall depth $^2P_{24h}$ as a parameter. The design rainfall depth P_d for a short duration d (minutes) is given by, $$P_d = P_{30} - F_D (P_{60} - P_{30}) \tag{0.2}$$ where P_{30} , P_{60} are the 30-minute and 60-minute duration rainfall depths respectively, obtained from the published design curves. F_D is the adjustment factor for storm duration Equation 0.2 should be used for durations less than 30 minutes. For durations between 15 and 30 minutes, the results should be checked against the published IDF curves. The relationship is valid for any ARI within the range of 2 to 100 years. The value of F_D is obtained from Table 0.3 as a function of $^2P_{24h}$, the 2-year ARI 24-hour rainfall depth. Values of $^2P_{24h}$ for Peninsular Malaysia are given in Figure 0.**Error! Bookmark not defined.**. Intermediate values should be interpolated. Note that Equation 0.2 is in terms of rainfall depth, not intensity. If intensity is required, such as for roof drainage, the depth P_d (mm) is converted to an intensity I (mm/hr) by dividing by the duration d in hours: $$I = \frac{P_d}{d} \tag{0.3}$$ Table 0.3 Values of F_D for Equation 0.2 | Duration | ² Ṗ _{24h} (mm) | | | | | | |-----------|------------------------------------|------------|------|-------|------|--| | | | East Coast | | | | | | (minutes) | ≤ 100 | 120 | 150 | ≥ 180 | All | | | 5 | 2.08 | 1.85 | 1.62 | 1.40 | 1.39 | | | 10 | 1.28 | 1.13 | 0.99 | 0.86 | 1.03 | | | 15 | 0.80 | 0.72 | 0.62 | 0.54 | 0.74 | | | 20 | 0.47 | 0.42 | 0.36 | 0.32 | 0.48 | | | 30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----|------|------|------|------|------| |----|------|------|------|------|------| Some computer models such as XP-RatHGL (see Chapter 17), require a continuous set of rainfall intensity data for a range of durations. If it is necessary to prepare data for such models, the recommended method is to use Equation 0.2 to derive intensities for short durations and use the resulting values in an IDF table or fitted polynomial curve. #### 0.0.4 IDF Values for Frequent Storms Water quality studies, in particular, require data on IDF values for relatively small, frequent storms. These storms are of interest because on an annual basis, up to 90% of the total pollutant load is carried in storms of up to 3 month ARI. Chapter 4 recommends that the water quality design storm be that with a 3 month ARI. The typical IDF curves given in Appendix 0.A have a lower limit of 2 years ARI and therefore cannot be used directly. The following preliminary equations are recommended for calculating the 1, 3, 6-month and 1 year ARI rainfall intensities in the design storm, for all durations: $${}^{0.083}I_D = 0.4 \times {}^2I_D \tag{0.4a}$$ $$^{0.25}I_D = 0.5 \times ^2I_D$$ (0.4b) $$^{0.5}I_D = 0.6 \times {}^2I_D \tag{0.4c}$$ $${}^{1}I_{D} = 0.8 \times {}^{2}I_{D} \tag{0.4d}$$ where, $^{0.083}I_D$, $^{0.25}I_D$, $^{0.5}I_D$ and 1I_D are the required 1, 3, 6-month and 1-year ARI rainfall intensities for any duration D, and 2I_D is the 2-year ARI rainfall intensity for the same duration D, obtained from IDF curves. Users should be aware of the limitations of these Equations 0.4a to 0.4d. They were derived by fitting a distribution to the 1-hour duration rainfalls, and extrapolating the distribution to frequent ARIs. This method is subject to considerable uncertainty. These preliminary equations were derived using Ipoh rainfall data. Further research is required to confirm the relationships, particularly in other parts of Malaysia where different climatic influences apply. #### 0.0.5 IDF Values for Rare Storms Further research is required in order to allow design rainfall information to be given for storms with ARI greater than 100 years. This Manual does not cover the design of major structures such as dams or bridges, for which a special hydrologic analysis is required. ## 0.1 DESIGN RAINFALL TEMPORAL PATTERNS #### 0.1.1 Purpose The temporal distribution of rainfall within the design storm is an important factor that affects the runoff volume, and the magnitude and timing of the peak discharge. Design rainfall temporal patterns are used to represent the typical variation of rainfall intensities during a typical storm burst. Standardisation of temporal patterns allows standard design procedures to be adopted in flow calculation. It is important to emphasise that these temporal patterns are intended for use in *design* storms. They should not be confused with the real rainfall variability in historical storms. Realistic estimates of temporal distributions are best obtained by analysis of local rainfall data from recording gauge networks. Such an analysis may have to be done for several widely varying storm durations to cover various types of storms and to produce distributions for various design problems. Different distributions may apply to different climatic regions of the country. Temporal patterns should be chosen so that the resulting runoff hydrographs are consistent with observed hydrographs. Therefore the form of the temporal pattern and the method of runoff computation are closely interlinked. The statistical basis of this approach is discussed in "Australian Rainfall and Runoff" (AR&R, 1987). A range of methods to distribute rainfall have been suggested in the literature: - Average temporal patterns developed from local pointrainfall data measured in short time intervals (15 minutes or less). - Simple idealised rainfall distribution fitted to local storm data by the method of moments. - 3. Temporal patterns from local IDF relationships. The second method is not recommended, as the idealised patterns are not representative of real storm patterns. Triangular patterns, for example, give unrealistically high peak intensities. The third approach for distributing rainfall within a design storm makes use of the local IDF relationship for the design ARI. This approach is based on the assumption that the maximum rainfall for any duration less than or equal to the total storm duration should have the same ARI. For example, a 10 year ARI three-hour design storm of this type would contain the 10 year ARI rainfall depths for all durations from the shortest time interval considered Rainfall Intensity, I (mm/hr) Design Chart 0.3 Runoff Coefficients for Urban Catchments Source: AR&R, 1977 Note: For I > 200 mm/hr, interpolate linearly to C = 0.9 at I = 400 mm/hr